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Valences of sites in bond percolation 
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t Department of Chemistry, University of Toronto, Toronto, Canada M5S 1Al 
$ Wheatstone Physics Laboratory, King’s College, University of London, Strand, London 
WC2R 2LS, UK 

Received 27 February 1981 

Abstract. We present calculations for the fraction of sites with given valence in finite and 
infinite clusters in the Bethe approximation, for a lattice of coordination number Q, and 
compare these results with series analysis results for the bond percolation problems on the 
square and simple cubic lattices. 

1. Introduction 

Recently we have used series analysis and Monte Carlo techniques to characterise a 
number of properties of percolating and non-percolating clusters in site percolation 
problems in two and three dimensions (Middlemiss et a1 1980, Gaunt et a1 1980, 
Whittington et a1 1980). It is now clear that the degree of ramification of a cluster 
depends very much on how one chooses to measure ramification, in particular whether 
the characterisation is based on a local or global property. Various properties have been 
used, such as cyclomatic index (Domb 1974, Stoll and Domb 1979, Cherry and Domb 
1980), perimeter (Domb 1974, Domb et a1 1975, Stoll and Domb 1978, Hankey 1978), 
valence (Gaunt et a1 1980, Whittington eta1 1980), radius of gyration (Stauffer 1978), 
backbone (Schlifer et a1 1979) and the relative thickness of the shortest spanning walk 
(Middlemiss et a1 1980). 

Most of this work has been concerned with site percolation, and in this paper we 
consider the characterisations based on valence for the bond problem on the square and 
simple cubic lattices. In 0 2 we discuss two alternative conventions for site occupation in 
bond percolation, and show that these lead to the same critical exponents. In 0 3 we 
carry out a calculation for the interior of a Bethe lattice to obtain the distribution of 
valences of sites in percolating and non-percolating bond clusters, at all bond densities, 
and extract some information about critical indices in this ‘Bethe’ approximation. 
Sections 4 and 5 are concerned with series analysis results for the square and simple 
cubic lattices. In 0 4 we discuss finite clusters and in 3 5 infinite clusters. Section 6 
comprises a discussion of our results. 

2. Mean valence of sites in bond clusters 

In discussing bond percolation there is a possible ambiguity in defining when a site is 
occupied. One possibility is to regard all lattice sites as being automatically occupied 
whether or not a bond is incident on that site. In this case it is necessary to consider sites 
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having zero valence, i.e. belonging to clusters with zero bonds. For a lattice of 
coordination number Q, the mean valence at bond density p ,  ( u o ( ~ ) ) ~ ,  of a site in any 
cluster (i.e. one with zero bonds, a non-zero but finite number of bonds, or an infinite 
number of bonds) is given by 

= Qp (2.1) 

where q = 1 - p .  This result is formally identical to the site problem. 
An alternative point of view is to regard a site as occupied if and only if it is an 

end-point of an occupied bond. The minimum valence of an occupied site is then unity, 
so that 

= @/(I - q Q ) .  (2.2) 

For each of these possibilities we can define the mean valence of a site in an infinite 
bond cluster, (vk(p))I, and the mean valence of a site in a finite bond cluster, 
(Ok(P))F, k = 0, 1. For an infinite cluster, the mean valence of a site is identical for the 
two alternatives, while finite clusters include clusters with zero bonds in the first case but 
not in the second. We can write 

(2.3) 

P(p ,  0) is the probability that a randomly chosen lattice site (which may have zero 
valence) is in an infinite bond cluster, while P ( p ,  1) is the probability that a randomly 
chosen lattice site which is the end-point of at least one occupied bond is in an infinite 
bond cluster. It is easily shown that 

( O k ( p ) ) E  = p(p ,  k)(Ok(P))I -I- [I  -p(P,  k)l(Ok(P))~. 

P(P,  0) = (1 - q Q ) P ( p ,  1). (2.4) 

Since ( ~ ~ ( p ) ) ~  = (ul(p)h, we obtain 

which implies that the leading singular behaviour of ( ~ ~ ( p ) ) ~  is the same as that of 
1 ( p ))Fa 

In a similar way we define f?(p, k) to be the fraction of sites with valence i, at bond 
density p ,  given that they are members of finite ( X  = F), infinite ( X  = I) or all ( X  = E) 
clusters, when sites have a minimum allowed valence equal to k. Clearly 

and 
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In the remainder of this paper we adopt the point of view that all lattice sites are 
occupied, and we write P ( p ,  0) = P ( p ) ,  with a similar convention for all other properties. 
Corresponding quantities in the alternative convention can be obtained using the above 
equations. 

3. Bethe approximation 

The approach used in this section is to consider every point to be an interior point on a 
Bethe lattice BQ of coordination number Q (see e.g. Essam 1972). Since surface effects 
are neglected, this is not an exact calculation for a Bethe lattice and, for that reason, we 
prefer to describe it as a Bethe approximation. 

Let 
__ 
P(P)  = 1 -m) (3.1) 

omQ =Po. (3.2) 

D ( p )  is conveniently calculated by noticing that it satisfies the relation (Essam 1972) 

D(P)  = 4 +PD(P)" (3.3) 

and 

where q = 1 - p  and U = Q - 1. One solution of this equation is D ( p )  = 1 (the low- 
density branch), and the other physically interesting solution (the high-density branch) 
satisfies D(1) = 0. 

We define P i ( p )  to be the probability that a randomly chosen site, with valence i, is a 
member of an infinite bond cluster, and 

__ 
Pi(p) = 1 -Pi(P).  (3.4) 

__ 
In order to calculate P i ( p ) ,  we note that a valence-i site is connected to i other sites by 
occupied bonds, and is not a member of an infinite cluster, if and only if none of these i 
neighbouring sites have infinite walks of occupied bonds emanating from them. Hence 

Let s be a lattice site, vi be the set of sites having valence i, and I be the set of sites in 
infinite clusters. 

Prob{s E V, and s E I }  = Prob{s E Vi}Prob{s E Ils E V,} = Prob{s E I }  Prob{s E Viis E I } .  
(3.6) 

Rewriting this in the notation of the present section, we obtain 

fE(p)Pi(p) =P(p)ff(p) (3.7) 

and hence 

In the same way 

Prob{s E Vi}=Prob{s E Vi(s ~ I } P r o b { s ~ I } + P r o b { s ~  Vils&I}(l-Prob{s~I})  (3.9) 
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(3.10) 

(3.11) 

and 

( u ( p ) ) F  = ~QD"-'. (3.12) 

Essam (1972) has pointed out that the high-density branch of D ( p )  is regular at p c  
and, extending his argument, it is straightforward to show that 

(3.13) 

Substituting (3.13) into (3.11) gives 

f~ ( p )  = fr  ( pc)(  1 + -( 1 + a - ai)(p - p c )  + 0 ( p - p c ) 2 ) ,  (3.14) 

For U 3 2 the linear term is positive for i = 0 , l  and negative for i 2 2, so that f: and f: 
will increase just above P, while f;, fj etc will decrease. Similarly, from (3.12) and 
(3.13) 

(3.15) 

In a similar way, we can investigate the p dependence of ff(p), just above p c ,  using 

U 
p 3 p c .  a-1 

(U (P))F = QPC - (2a - Q ) ( p  - PJ + O ( P  - P C ) ~ .  

(3.8) and (3.13). The result is 

(3.16) 

The most interesting aspect of this equation is the absence of a term linear in p - p c .  
At the critical density, (3.16) gives 

fi (P,) = [(a - l)/flI", 

fi ( P c )  = [(a - l)/aI"-l 

(3.17) 

(3.18) 

and, in general, 

( p C ) / f f ( p c )  = ( g  + 1 - i) / i(a - 11, i 3 1 ,  (3.19) 

so that, for i > 2, fi ( p c )  is a monotone decreasing function of i for any value of a. In fact 
ff(p,) attains its largest value for i = 2. 

For Q = 4, 

P 4, (3.20) 

(Essam 1972) and f: can then be calculated from (3.8) and (3.20). The results are given 
in figure 1. fi goes through a maximum at p = 0.75 while the remaining functions are 

1 / 2  - 1 D ( P ) = % ( ~ - ~ P ) / P ~  2 ,  
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P 

Figure 1. The p dependence of ff  for the Q = 4 Bethe approximation. 

monotone (cf the square lattice site percolation results of Whittington eta1 (1980)). The 
corresponding results for the Q = 6 case are given in figure 2. It is interesting to note 
that at p c ,  sites of valence less than or equal to three account for roughly 94% of the sites 
in infinite clusters. 

0 
P 

Figure 2. The p dependence of f f  for the Q = 6 Bethe approximation. 



2420 S G Whittington, K MMiddlemiss,and D S Gaunt 

The mean valence (U ( p ) ) ~  is given by 

(3.21) 

Taking the limit p + p :  gives ( ~ ( p , ) ) ~  = 2, so that the cyclomatic index of the cluster is 
zero (and the cluster is a tree). The mean valence increases (initially with zero slope), 
attaining its maximum value of Q at p = 1,  by which time the cluster is completely 
compact. (Note that a calculation for a Bethe lattice including surface effects would give 

Whittington et a1 (1980) suggested an alternative measure of the degree of 
ramification of a cluster based on the observation that the cyclomatic index (C) of a 
cluster of n sites and b bonds can be written 

(U(P))I = 2,  p S P C . )  

(3.22) 

where ni is the number of sites in the cluster with valence i. Since the cyclomatic index is 
non-negative, for an infinite cluster 

and 

(3.23) 

(3.24) 

is zero if the cluster is a tree and has a maximum value of unity for a completely compact 
cluster. 

A calculation of p for a Bethe lattice including surface effects would give p ( p )  = 0 
for all p > p c ,  since all clusters are trees. Using (3.8), which was derived for the interior 
of a Bethe lattice, gives ( p , )  = 0 but p then increases monotonically to a value of unity 
a t p = l .  

4. Series derivation and analysis for finite clusters 

For densities below the critical density, all clusters are finite clusters and, from (2.7),  

To describe the high-density behaviour off:, we define C(n, t, i )  to be the number (per 
lattice site) of sites having valence i in clusters of n bonds (n  3 O) ,  with bond perimeter t. 
Then f: is given by 

~ ( q )  =C C ( n ,  t, i ) q ' ( l  - q ) n / ~  C ( n ,  t, i )q ' ( l -q)n  (4.2) 
n,r n,t,i  

where q = 1 - p .  We have calculated, using an enumeration programme, C ( n ,  t, i) for 
n S 12 for the square lattice and n S 9  for the simple cubic lattice. Using these data 
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alone, the expansion of the numerators and denominator in (4.2), for the square lattice, 
would be correct only to order q13. This would lead to expansions forfr correct only to 
order 4'. To extend these series to order q" we have included all clusters with a bond 
perimeter less than or equal to fifteen. In a similar way, we have included all clusters 
with a bond perimeter of less than or equal to thirty for the cubic lattice, and some 
additional data for f :  and f f .  The series for the square lattice are 

f z  = 1 - 44' + 4q3 - 6q4 + 4q5 + 10q6 - 48q7 
+ 106q8 -'148q9 - 138q'O + 1540q" + . . . , 

f; = 1 0 ~ 4 - 2 0 ~ 5 + 2 6 q 6 - 1 6 ~ 7 - 5 0 ~ 8 + 2 5 6 ~ 9 - 6 5 4 ~ 1 0 + 1 1 1 2 ~ 1 1 + .  , . , 

(4.3) 

(4.4) 

(4.5) 

fy =4q2-4q3-4q4+ 16q5 -52q6+ 112q7 - 188q8 + 176q' + 196q'O- 1488q"+, , . , 

f; = 1 6 ~ 6 - 4 8 ~ 7 + 1 1 6 ~ 8 - 2 2 0 ~ 9 + 3 8 8 ~ ' 0 - 5 8 8 ~ ' 1 + .  . . , 
f: = 16q8 - 64q' + 208q'O - 576q" + . . . , 
and, for the simple cubic lattice, 

f: = 1 - 6q4+6q5 -9q8+ 18q9-21q10+64q12-72q'3 - 84q14+ 1 0 4 p  +483qI6 

- 14O4qI7 + 1418q18+768q'9 -4047q20+2160q21 

+9048q2' - 10 512qZ3 -39 244qZ4 + . . . , (4.8) 

f: = 6q4 -6q5 - 6q8+ 12q9-6q10+ 24q"- 120q12+ 216q13 - 192q14 +216q1' 

- 66Oql6 + 1584q17 - 2268q18 + 1140q" + 1812q'O- 120Oqz1 

-8064q2'+ 13 296q23+ 13 998q24+. . . , (4.9) 

f: = 15q8-30q9+27q10-24q11 +36q12-84q13+ 168qt4- 156q'5-54q'6+228q17 

- 1 3 2 ~ 1 8 + 6 0 ~ 1 9 - 5 5 8 q 2 0 + 2 4 3 6 ~ 2 1 - 6 6 6 0 ~ 2 2 +  10 0O8qz3 

-1467qZ4+. . . , (4.10) 

f ;  = 20q1'- 6Oql3 + 108qI4- 164q" + 2 1 6 p "  348qI7 + 820q"- 162Oqt9+ 2208q'O 

-2484q" + 3888q" - 8856q23 + 19 020q24 - . . . , (4.11) 

f: = 15q16-60q'7+ 162q18-348q19+579q20 

-882q'l + 1680q" - 3636qZ3 + 7O44qz4 - . . . , (4.12) 

(4.13) 

(4.14) 

f: = 6qzo - 3Oqz1 + 108q" - 30Oqz3 + 648qZ4 - 1194q" + . . . , 
f f  =q24-6q25+27q26-92q27+. . . . 

At low density 

(U(P) )F=  @ (4.15) 

and the high-density series are 

( u ( ~ ) ) F  = 4q2 -4q3 + 16q4-24q5 + 48q6 - 64q7 

+124q8-228q9+884q'0-3332q1'+. . . (4.16) 
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for the square lattice, and 

( v ( q ) ) F  = 6q4 - 6qs + 24q8 -48q9+ 48q10 - 24q”+ 12q” 

-132qI3 +468qI4- 588q” - 60qI6 + 756q” + 576q’’ -4992q” 

+9666qZ0 - 7458qZ1 - 246Oqz2 - 930Oqz3 + 99 546qZ4 + . . . (4.17) 

for the simple cubic lattice. 
We have evaluated Pad6 approximants (Gaunt and Guttmann 1974) to all these 

series and the results are presented in figures 3-6. The results for f F  for the square 
lattice are given in figure 3. The full curves are for the Q = 4 Bethe approximation 
( p c  = f) calculated from (2.7) at low density and (3.11) and (3.20) at high density. For 
the square lattice, the low-density branches ( p  s p c  = f) are again given by (2.7). These 
are identical to the Bethe approximation for p c f and are shown as dotted curves for 
5 c p 6 f. The Pad6 approximants to the high-density series are shown by broken curves 
with error bars indicating the estimated uncertainties. The approximants are unreliable 

1 

I I I , I  I I , I I 

t 111 1 

Figure 3. Comparison of the p dependence of ff for the Q = 4 Bethe approximation (full 
curves) and the square lattice bond problem (broken curves above p c ,  full and dotted curves 
below pc ,  see text). 

Figure 4. As figure 3, but for the Q = 6 Bethe approximation and the simple cubic bond 
problem. 
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C '  1 
, I I I I 

Figure 5. Comparison of ( ~ ( p ) ) ~  for the Q = 4  Bethe approximation (full curve), square 
bond (hatched) and square site (0) problems. 

P 

Figure 6. Comparison of (U ( P ) ) ~  for the Q = 6 Bethe approximation (full curve) and simple 
cubic bond problem (0). 

for p C 0.55 but, provided that P ( p )  is continuous, f y  ( p )  is continuous and the high- and 
low-density branches must match at p c  = 4. 

The corresponding results for the simple cubic lattice are shown in figure 4. The 
Bethe approximation to the high-density branches is much better in this case, but 
significant deviations still occur close to p c .  Notice that, for both lattices, the high- 
density branch of f y  must approach its value at p c  with infinite slope (Whittington et a1 
1980, (2.1 1) while, for the Bethe approximation, they approach linearly (equation 
(2.13)). 

Similar remarks apply to the mean valence results shown in figures 5 and 6 .  The 
curve for the square lattice site problem is reproduced in figure 4 from Gaunt et a1 
(1980) for comparison. For these finite cluster properties, the Bethe approximation is 
better for the bond problem than for the site problem, and better in three dimensions 
than in two. 

5. Series derivation and analysis for infinite clusters 

Properties of the infinite cluster(s) can be related to those of the finite clusters through 
equations such as 

f34) =fF(d(l -P(d)+ff(dP(d ( 5  0 1) 
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(Cherry and Domb 1980, Gaunt et a1 1980, Whittington eta1 1980). We have derived 
the series for P(q)  from 

~ ( q )  = 1 - C C(n, r, i)q'(l-q)". (5.2) 
iao n,t 

For the square lattice 

~ ( q )  = 1 - q4-4q6 +4q7 -22qs+ 36q9- 1189" 

+224q1' -618q1'+ 1292q13 - 3522q14+8564q1' + . . I (5.3) 

and for the simple cubic lattice 

P(q)  = 1 -q6-66410+6q11-45q14+90~15-57~16-260~1s+900q19 

-1200q2O+572qZ1- 1098qz2+636Oqz3- 14 332qZ4+ 15 444q" 

-12 45Oqz6+39 366qZ7-124 284qZ8+218 O28qz9-256 649q30+. . . . 
(5.4) 

The coefficients in (5.3) have been calculated independently by J W Essam (unpub- 
lished). Combining these series with those forf: derived in § 4 and with (2.7) yields, for 
the square lattice, 

fi = 4q3 -4q4-4q6+8q7 - 16q8 + 32q9-72q10+ 152q" 

-332q12+736q*3-1796q*4+4584q15+. . . ) (5.5) 

-380q11+962q12-2388q13+5826q14-14 108q1'+. . . ) 

-3144q1'+7632q13-18 432q14+45 288q1'+. . . , 

+2514q12-5980q13+14402q14-35 764q"+. . . . 

fi = 6q2- 12q3 +6q4+6q6 - 12q7 +20q8 - 52q9+ 144q'O 

(5.6) 

(5.7) 

f\ = 4q - 12q' + 12q3 -4q4+4q5 - 12q6+28q7-68q8+ 188q9- 5 O O q ' O +  1276q" 

f i  = 1 -4q + 6q2 -4q3 + 2q4 - 4q5 + 10q6 - 24$+ 64q8- 168q9 +428q10 - 1048q'l 

(5.8) 

The corresponding series for the simple cubic lattice are 

f i  = 6q5-6q6- 6q10+ 12q11-6q12- 3 0 q 1 4 + 9 6 p  - 1O8ql6+ 24q17 12Oql8 

+756q19- 1458qzo+ 1032q21-324q22+3900q23- 13 722qZ4 

+I9  932qZ5-12 12OqZ6+15 144qZ7-87 684qZ8+224 976q29 

-29 229Oq3O+. . . , (5.9) 

fi = 15q4-30q5+ 15q6+ 15q'0-30q11 + 15q'2+75q14-240q'5 +258+ 96q17 

+564q18-2346q'9+3885q20-3108q21+4302q'2- 18 294qZ3 

+44 439qZ4-57 912qZ5+53 460q26- 11 9652qZ7+378 27Oqzs 

-740 736qZ9 + 920 259q30 - . . . , (5.10) 
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fi = 2 0 q 3 - 6 0 ~ 4 + 6 0 ~ s - 2 0 ~ 6 + 2 0 ~ 9 - 6 0 ~ 1 0 + 6 0 ~ 1 1 - 2 0 ~ 1 2 +  120q13-480q14 

+740q1s-540q16+ 1080q'7-4540q18+9540q19- 10 788q20 

+12 O44qz1-36 096qZ2+97 248q23- 157 1O8qz4+ 175 632q2' 

-284 976qZ6+793 512qZ7- 1731 612q28+2565 444q29 

-3365 4O0q3O+. . ., (5.11) 

fi = 15q2-60q3 +90q4-60qs + 15@+ 15q8-60q9+ 90q10-60q11 

+105q1' - 45OqI3 + 915q l4 - 960q l5 + 1 2 1 5 p  - 42O0qI7 

+10 5O0ql8-15 120q19+16 920qZ0-35 73Oqz1+99 120q22 

-188 70Oqz3 +245 523qZ4 - 338 5 0 2 p  +796 176qZ6 - 1867 548q27 

+3168 7O8qz8-4346 874qZ9+7346 142q30-. . . , (5.12) 

f: = 6q -30q2+ 60q3-  60q4+ 30qs -6q6+ 6q7- 30q8+ 6Oq9-60q1O 

+66q11-222q'2+546q13-750q14+870q1s-2166~16 

+5880q17-10 248q18+12 816q19-21 060qzo+53 946qZ1 

-115 158qZ2+ 173 778q23-233 814qZ4+454 278qZ5 

-1066 296qZ6+2016 276qz7-3O10 254q28+4685 586qZ9 

-9645 774q30 + 20 578 704q31 - . . . , (5.13) 

f: = 1 -6q + 15q2- 20q3 + 15q4-6q5 + 2q6-6q7 + 15q8-2Oq9+21q1O 

-48q"+ 128q12 -216ql3+27Oql4 - 506q" + 1341q16 -2688q17 

+3844ql8-5646ql9+ 12 501qZ0-28 184qZ1+48 156qZ2-67 932q23 

+114 682qZ4-253 428q2'+513 756qZ6-837 732qZ7+ 1282 572qZ8 

-2388 396qZ9+5037 O63q3O-. , . , (5.14) 

Combining these gives the series for ( ~ ( q ) ) ~  and p(q). For the square lattice 

(u(q))I  = 4 -4q +4q4 -4q' + 12q6-28q7+ 76q8- 18Oq9+428q1O 

- 9 7 2 p  + 2216q"- 5064qI3 + 12 168q14- 30 8 2 4 p  + . . . (5.15) 

and 

p(q)  = 1 -2q3 -2q4-4q5 - 2q6-4q7 +4q8+24q10 

+16q1 '+70~12+56q13+222~14-152q1s+ .  . . . (5.16) 

For the simple cubic lattice 

(u (q ) ) I=  6 - 6q + 6q6 - 6q7 + 3Oq'O- 664'' + 42q1' - 6q13 + 21OqI4 - 69OqI5 

+864q16 -456q1'+ 1212~7'~ - 5592ql9 + 11 334qzo - 11 346qZ1 

+9618q2' -34 446qZ3 + 104 946qZ4- 172 1 8 2 p  + 175 632qZ6 

-258 828qZ7+793 O14qz8- 1850 106qZ9+2830 1O4q3O.. . (5.17) 
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where we omit the higher-order terms since the fractions become awkward. 
We have formed PadC approximants to each of these series. The convergence is 

remarkably good, and much better than for the corresponding series for finite clusters. 
For the square lattice bond problem the estimated p dependence of f 1 (  ) is essentially 
superimposable on the Q = 4  Bethe results (figure 1) for p > p C = 5 .  The largest 
deviations occur at p c ,  and in table 1 we compare the estimates with the Bethe 
approximation at p = f. Estimates of ff ( p )  for the square lattice site problem have been 
reported elsewhere (Whittington et a1 1980). These are also very close to the Bethe 
results, and the largest deviations again occur at the critical point, p c  2: 0.593. In table 1 
we also give the estimates of ff at p = 0.6 for the square lattice site and bond problems 
and for the Q = 4 Bethe approximation for comparison. 

#'I 

Table 1. Comparison of f: for four-coordinated lattices. 

p = 0.5 p = 0.6 

Square bond B4 Square site Square bond B4 

f: 0.215 0.224 0.126 0.144 0.145 
f: 0.410 0.414 0.354 0.357 0.358 
f: 0.297 0.289 0.375 0.362 0.361 
fi 0.078 0.073 0.143 0.136 0.136 

The Q = 6 Bethe results for ff are again an excellent approximation to the bond 
problem on the simple cubic lattice. For p > 0.3 the Bethe approximation within the 
small uncertainties in the PadC approximants. For i = 1 and 2 the simple cubic curves 
for p < 0.3 deviate negatively by about 0.008 and 0.003, respectively, while for i = 3 
and 4 the deviations are positive and about equal to 0.005 and 0.004 respectively. 
These deviations are in the same directions as for the square lattice (see table 1). 
Deviations for i = 5 and 6 are negligible even at pc. 

The disadvantage with this comparison is that, for instance, it compares an 
incipiently percolating cluster on a lattice, with infinite clusters in the corresponding 
Bethe approximation at a density well above the critical density. An alternative view is 
to take account of the differences in critical densities by using the reduced density 
variable 

(5.19) P = (P -pc)/(l - p c ) .  

The dependences of ( ~ ( p ) ) ~  and (U ( p )  on this reduced density are shown in figures 7-10. 
For the square lattice the deviations from the Bethe approximation are quite marked, 
and are greater for the site problem than for the bond problem. For the simple cubic 
lattice the deviations are much less, though this reflects, in part, the smaller difference 
between the critical density of the lattice and that in the corresponding Bethe approxi- 
mation. 
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Figure 7. Comparison of ( u ( p ) ) ~  for the Q = 4 Bethe approximation (A), square lattice bond 
(B) and site (C) problems. 

lp -pr l  / l l - p c \  

Figure 8. Comparison of ( ~ ( p ) ) ~  for the Q = 6 Bethe approximation (A) and simple cubic 
bond problem (B). 

lp-prl / l l - p c l  

Figure 9. Comparison of p ( p )  for the Q = 4 Bethe approximation (A), square lattice bond 
(B) and site (C)  problems. 

6.  Discussion 
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Figure 10. Comparison of ~ ( p )  for the Q = 6 Bethe approximation (A) and simple cubic 
bond problem (B). 

then Gaunt etal(l980) showed that, provided P ( p )  is continuous, ( u ( p ) ) F i s  continuous 
at p c  and p’ = p, the exponent characterising the behaviour of P ( p ) .  Our calculation for 
the Bethe approximation confirms this explicitly with p ’=p  = 1.  f r ( p ) ,  in the Bethe 
approximation, also approaches its critical value linearly, as expected from the general 
arguments given in Whittington etal(1980), and we can obtain from (3.5) and (3.13) an 
explicit expression for Pi ( p )  in this approximation, 

so that, as expected (Whittington et a1 1980), P i ( p )  is singular at p c  for all i, at least in 
this approximation. Moreover, for Q = 4 it is clear from (3.5) and (3.20) that P i ( p )  has 
no other singularities on the real interval (0 ,  1). 

The Bethe approximation result (3.16) for ff shows that the critical values are 
approached quadratically. 

The series results for fr shows rather poor convergence, but there is at least 
qualitative agreement between the behaviour for the square site and square bond 
problems. In the same way, the behaviour of ( ~ ( p ) ) ~  for both the square and simple 
cubic lattices is similar for the site and bond versions of these problems. 

The convergence for the infinite cluster data is much better than for the finite 
clusters and is in remarkably close agreement with the Bethe approximation. If, 
however, the results are considered in terms of the reduced density, p (equation (5,19)), 
it is clear that at and just above the critical density the infinite cluster is more ramified in 
three dimensions than in two, and more ramified for the bond problem than for the site 
problem. For instance, the values of k ( p c )  are zero for the Bethe approximation, about 
0.2 for the simple cubic bond problem, about 0.55 for the square bond problem and 
about 0.8 for the square site problem. 
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